Bluetooth Hacking

Full Disclosure

Adam Laurie
Marcel Holtmann
Martin Herfurt

SyScan'05
Bangkok, Thailand
Agenda

- Bluetooth technology overview
- The security mechanisms
- Known vulnerabilities
- Tools that are used
- Live demonstration
Who is investigating

- Adam Laurie
 - CSO of The Bunker Secure Hosting Ltd.
 - DEFCON staff and organizer
- Marcel Holtmann
 - Maintainer of the Linux Bluetooth stack
- Martin Herfurt
 - Security researcher
 - Founder of trifinite.org
What is this about

New device found: Airbus A310
Proceed with configuration?
What is Bluetooth

- **Bluetooth SIG**
 - Trade association
 - Founded 1998
 - Owns and licenses IP

- **Bluetooth technology**
 - A general cable replacement
 - Using the ISM band at 2.4 GHz
 - Protocol stack and application profiles
How it works

• Data and voice transmission
 • ACL data connections
 • SCO and eSCO voice channels
• Piconet and scatternet topology
• Frequency hopping
 • 79 channels
 • 1600 hops per second
Creating the topology

- Hopping sequence defines the piconet
 - Master defines the hopping sequence
 - Up to seven active slaves
 - Scatternet creation
Bluetooth architecture

- **Hardware layer**
 - Radio, Baseband and Link Manager
 - Access through the Host Controller Interface
 - Standards for USB and UART

- **Host protocols**
 - L2CAP, SDP, RFCOMM, BNEP, AVDTP etc.

- **Application profiles**
 - Serial Port Profile, Dialup, PAN, A2DP, HID etc.
Bluetooth stack

Application specific security mechanisms

Bluetooth host security mechanisms

Security mechanisms on the Bluetooth chip
Bluetooth security

- Link manager security
 - All security routines are on-chip
 - Nothing is transmitted in “plain text”

- Host stack security
 - Interface to the link manager security
 - Part of the HCI specification
 - Easy interface
 - No further encryption of pin codes or keys
Bluetooth link keys

- Needed for authentication
- Used for encryption
 - SAFER+ (128 bit block cipher)
- Generated by pairing process
 - Passkey (1-16 alphanumeric characters)
 - Random number (from device internal clock)
 - BD_ADDR of piconet master
Security modes

- Security mode 1
 - No active security enforcement
- Security mode 2
 - Service level security
 - On device level no difference to mode 1
- Security mode 3
 - Device level security
 - Enforce security for every low-level connection
Security commands

• Settings
 • HCI_{Read|Write|Delete}_Stored_Link_Key
 • HCI_{Read|Write}_Authentication_Enable
 • HCI_{Read|Write}_Encryption_Mode

• Actions
 • HCI_Authentication_Requested
 • HCI_Set_Connection_Encryption
 • HCI_Change_Connection_Link_Key
Pairing functions

• Events
 • HCI_Pin_Code_Request
 • HCI_Link_Key_Request
 • HCI_Link_Key_Key_Notification

• Responses
 • HCI_Pin_Code_Request_[Negative_]Reply
 • HCI_Link_Key_Request_[Negative_]Reply
How pairing works

• First connection

 (1) > HCI_Pin_Code_Request
 (2) < HCI_Pin_Code_Request_Reply
 (3) > HCI_Link_Key_Notification

• Further connections

 (1) > HCI_Link_Key_Request
 (2) < HCI_Link_Key_Request_Reply
 (3) > HCI_Link_Key_Notification (optional)
How to avoid pairing

- L2CAP
- RFCOMM
- Channel 3
 - OBEX Push Profile
- Channel 4
 - Synchronization Profile
 - Security Manager

- OBEX
- vCard
- Contacts
- IrMC

- RFCOMM
- L2CAP
BlueSnarf

- Trivial OBEX push attack
 - Pull knows objects instead of pushing
 - No authentication
- Discovered by Marcel Holtmann
 - Published in October 2003
- Also discovered by Adam Laurie
 - Published in November 2003
 - Field tests at London Underground etc.
BlueBug

• Issuing AT commands
 • Use hidden and unprotected channels
 • Full control over the phone

• Discovered by Martin Herfurt
 • Motivation from the BlueSnarf attack
 • Public field test a CeBIT 2004

• Possibility to cause extra costs
HeloMoto

- Requires entry in “My Devices”
- Use OBEX push to create entry
 - No full OBEX exchange needed
- Connect to headset/handsfree channel
 - No authentication required
 - Full access with AT command
- Discovered by Adam Laurie
Authentication abuse

- Create pairing
 - Authenticate for benign task
 - Force authentication
 - Use security mode 3 if needed
- Connect to unauthorized channels
 - Serial Port Profile
 - Dialup Networking
 - OBEX File Transfer
BlueSmack

- Using L2CAP echo feature
 - Signal channel request and response
 - L2CAP signal MTU is unknown
 - No open L2CAP channel needed
- Causing buffer overflows
- Denial of service attack
BlueStab

- Denial of service attack
 - Bluetooth device name is UTF-8 encoded
 - Friendly name with control characters
 - Crashes some phones
 - Can cause weird behaviors
 - Name caches can be very problematic

- Credits to Q-Nix and Collin R. Mulliner
BlueBump

- Forced re-keying
 - Authenticate for benign task (vCard exchange)
 - Force authentication
- Tell partner to delete pairing
 - Hold connection open
 - Request change of connection link key
- Connect to unauthorized channels
BlueSnarf++

- OBEX push channel attack, again
 - Connect with Sync, FTP or BIP target UUID
 - No authentication
 - Contents are browseable
 - Full read and write access
 - Access to external media storage

- Manufacturers have been informed
BlueSpooof

- Clone a trusted device
 - Device address
 - Service records
 - Emulate protocols and profiles
- Disable encryption
- Force re-pairing
BlueDump

• Yanic Shaked and Avishai Wool
 • http://www.eng.tau.ac.il/~yash/Bluetooth/
 • Expands PIN attack from Ollie Whitehouse
 • Requires special hardware or firmware

• Destroy trust relationship
 • Use the BlueSpooof methods

• User interaction for pairing still needed
Blueprinting

- Fingerprinting for Bluetooth
- Work started by Collin R. Mulliner and Martin Herfurt
- Based on the SDP records and OUI
- Important for security audits
- Paper with more information available
Bluetooone

• Enhancing the range of a Bluetooth dongle with a directional antenna
• Long distance attack after DEFCON 12
• Snarfing over 1,78 km
Blooover

- Bluetooth Wireless Technology Hoover
 - Proof-of-Concept application
 - Educational purpose only
 - Phone auditing tool
 - J2ME MIDP 2.0 and JSR-82
- Written by Martin Herfurt
- Announced at 21C3 in Berlin
Blooover

- Find BT-Devices
- Attack Features
 - Snarf Phonebook
 - Snarf SMS
 - Add Phonebook
 - Set Call Forward
 - Initiate Voice Call

- Entry Name
 - Honey
- Entry Number
 - +492234899577
- Details for Call Forward:
 - Forward Number
 - +4913377001

- Results
 - Blooover - the Bluetooth Hoover
 - Snarfed Phonebooks:
 - Mobile Equipment
 - Honey
 - +492234899577
Blooover II

• Successor of the popular Blooover
 • Auditing tool for professionals
 • More attacks than only BlueBug
 • Not all of the attacks are feasible on J2ME

• To be developed later
Blooonix

• Linux distribution for Bluetooth audits
 • LiveCD based on Morphix
 • Latest official Linux 2.6 kernel
 • Contains all latest BlueZ utilities
 • Includes also special hacker scripts
 • Graphical interface
 • Report generation

• Not available at the moment
BluePot

- Bluetooth HoneyPot
 - Runs on J2ME phones
 - Imitates vulnerable phone
 - Logs incoming attacks and device information
 - Strikeback capable

- Written by Martin Herfurt

- Not released yet
The Car Whisperer

- Use default pin codes to connect to carkits
- Inject audio
- Record audio

- Don't whisper and drive!
The Car Whisperer

- Stationary directional antenna
 - 15 seconds visibility
 - Average speed of 120 km/h (range 500 m)
Conclusions

• Bluetooth is secure standard (per se)
 • Problems are at the application level

• Cooperation with the Bluetooth SIG
 • Pre-release testing at UPF (UnPlugFests)
 • Better communication channels
 • Clear user interface and interaction
 • Mandatory security at application level
 • Using a policy manager
Further information

• trifinite.org
 • Loose association of security experts
 • Public information about Bluetooth security
 • Individual testings and trainings
 • TRUST = trifinite unified security testing

• Contact us via syscan@trifinite.org
Questions or feedback