Bluetooth Security: Beyond Bluebug

Session 5
Adam Laurie, Marcel Holtmann, Martin Herfurt
Tuesday, November 15th, 2005 – 2:45 pm
Agenda

- Bluetooth technology overview
- The security mechanisms
- Known vulnerabilities
- Tools that are used
- Live demonstration
Who is investigating

● Adam Laurie
 • CSO of The Bunker Secure Hosting Ltd.
 • DEFCON staff and organizer

● Marcel Holtmann
 • Maintainer of the Linux Bluetooth stack

● Martin Herfurt
 • Security researcher
 • Founder of trifinite.org
What is this about

New device found: Airbus A310
Proceed with configuration?
What is Bluetooth

- Bluetooth SIG
 - Trade association
 - Founded 1998
 - Owns and licenses IP

- Bluetooth technology
 - A general cable replacement
 - Using the ISM band at 2.4 GHz
 - Protocol stack and application profiles
How it works

● Data and voice transmission
 • ACL data connections
 • SCO and eSCO voice channels

● Piconet and scatternet topology

● Frequency hopping
 • 79 channels
 • 1600 hops per second
Creating the topology

- Hopping sequence defines the piconet
 - Master defines the hopping sequence
 - Up to seven active slaves
 - Scatternet creation
Bluetooth architecture

- **Hardware layer**
 - Radio, Baseband and Link Manager
 - Access through the Host Controller Interface
 - Standards for USB and UART

- **Host protocols**
 - L2CAP, SDP, RFCOMM, BNEP, AVDTP etc.

- **Application profiles**
 - Serial Port Profile, Dialup, PAN, A2DP, HID etc.
Bluetooth stack

Application specific security mechanisms

Bluetooth host security mechanisms

Security mechanisms on the Bluetooth chip
Bluetooth security

- **Link manager security**
 - All security routines are on-chip
 - Nothing is transmitted in “plain text”

- **Host stack security**
 - Interface to the link manager security
 - Part of the HCI specification
 - Easy interface
 - No further encryption of pin codes or keys
Bluetooth link keys

● Needed for authentication

● Used for encryption
 • SAFER+ (128 bit block cipher)

● Generated by pairing process
 • Passkey (1-16 alphanumeric characters)
 • Random number (from device internal clock)
 • BD_ADDR of piconet master
Security modes

● Security mode 1
 • No active security enforcement

● Security mode 2
 • Service level security
 • On device level no difference to mode 1

● Security mode 3
 • Device level security
 • Enforce security for every low-level connection
Security commands

- **Settings**
 - HCI_{Read|Write|Delete}_Stored_Link_Key
 - HCI_{Read|Write}_Authentication_Enable
 - HCI_{Read|Write}_Encryption_Mode

- **Actions**
 - HCI_Authentication_Requested
 - HCI_Set_Connection_Encryption
 - HCI_Change_Connection_Link_Key
Pairing functions

● Events
 • HCI_Pin_Code_Request
 • HCI_Link_Key_Request
 • HCI_Link_Key_Notification

● Responses
 • HCI_Pin_Code_Request_[Negative_]Reply
 • HCI_Link_Key_Request_[Negative_]Reply
How pairing works

● First connection
 (1) > HCI_Pin_Code_Request
 (2) < HCI_Pin_Code_Request_Reply
 (3) > HCI_Link_Key_Notification

● Further connections
 (1) > HCI_Link_Key_Request
 (2) < HCI_Link_Key_Request_Reply
 (3) > HCI_Link_Key_Notification (optional)
How to avoid pairing

- vCard
- Contacts
- IrMC
- OBEX
 - Channel 3: OBEX Push Profile
 - Channel 4: Synchronization Profile
 - Security Manager
- RFCOMM
- L2CAP
BlueSnarf

● Trivial OBEX push attack
 • Pull knows objects instead of pushing
 • No authentication

● Discovered by Marcel Holtmann
 • Published in October 2003

● Also discovered by Adam Laurie
 • Published in November 2003
 • Field tests at London Underground etc.
BlueBug

- Issuing AT commands
 - Use hidden and unprotected channels
 - Full control over the phone
- Discovered by Martin Herfurt
 - Motivation from the BlueSnarf attack
 - Public field test a CeBIT 2004
- Possibility to cause extra costs
HeloMoto

- Requires entry in “My Devices”
- Use OBEX push to create entry
 - No full OBEX exchange needed
- Connect to headset/handsfree channel
 - No authentication required
 - Full access with AT command
- Discovered by Adam Laurie
Authentication abuse

● Create pairing
 • Authenticate for benign task
 • Force authentication
 • Use security mode 3 if needed

● Connect to unauthorized channels
 • Serial Port Profile
 • Dialup Networking
 • OBEX File Transfer
BlueSmack

- Using L2CAP echo feature
 - Signal channel request and response
 - L2CAP signal MTU is unknown
 - No open L2CAP channel needed
- Causing buffer overflows
- Denial of service attack
BlueStab

- Denial of service attack
 - Bluetooth device name is UTF-8 encoded
 - Friendly name with control characters
 - Crashes some phones
 - Can cause weird behaviors
 - Name caches can be very problematic

- Credits to Q-Nix and Collin R. Mulliner
BlueBump

- Forced re-keying
 - Authenticate for benign task (vCard exchange)
 - Force authentication

- Tell partner to delete pairing
 - Hold connection open
 - Request change of connection link key

- Connect to unauthorized channels
BlueSnarf++

- OBEX push channel attack, again
 - Connect with Sync, FTP or BIP target UUID
 - No authentication
 - Contents are browseable
 - Full read and write access
 - Access to external media storage

- Manufacturers have been informed
BlueSpooof

- Clone a trusted device
 - Device address
 - Service records
 - Emulate protocols and profiles
- Disable encryption
- Force re-pairing
BlueDump

- Yanic Shaked and Avishai Wool
 - http://www.eng.tau.ac.il/~yash/Bluetooth/
 - Expands PIN attack from Ollie Whitehouse
 - Requires special hardware or firmware

- Destroy trust relationship
 - Use the BlueSpooof methods

- User interaction for pairing still needed
Blueprinting

- Fingerprinting for Bluetooth
- Work started by Collin R. Mulliner and Martin Herfurth
- Based on the SDP records and OUI
- Important for security audits
- Paper with more information available
Bluetooone

- Enhancing the range of Bluetooth dongle with a directional antenna
- Long distance attack after DEFCON 12
- Snarfing over 1,78 km
Blooover

- Bluetooth Wireless Technology Hoover
 - Proof-of-Concept application
 - Educational purpose only
 - Phone auditing tool
 - J2ME MIDP 2.0 and JSR-82

- Written by Martin Herfurt

- Announced at 21C3 in Berlin
Blooover II

- Successor of the popular Blooover
 - Auditing tool for professionals
 - More attacks than only BlueBug
 - Not all of the attacks are feasible on J2ME

- To be developed later
Blooonix

- Linux distribution for Bluetooth audits
 - LiveCD based on Morphix
 - Latest official Linux 2.6 kernel
 - Contains all latest BlueZ utilities
 - Includes also special hacker scripts
 - Graphical interface
 - Report generation

- Not available at the moment
BluePot

- Bluetooth HoneyPot
 - Runs on J2ME phones
 - Imitates vulnerable phone
 - Logs incoming attacks and device information
 - Strikeback capable

- Written by Martin Herfurt
- Not released yet
The Car Whisperer

- Use default pin codes to connect to carkits
- Inject audio
- Record audio
- Don't whisper and drive!
The Car Whisperer

● Stationary directional antenna
 • 15 seconds visibility
 • Average speed of 120 km/h (range 500 m)
Conclusions

- Bluetooth is secure standard (per se)
 - Problems are at the application level
- Cooperation with the Bluetooth SIG
 - Pre-release testing at UPF (UnPlugFests)
 - Better communication channels
 - Clear user interface and interaction
 - Mandatory security at application level
 - Using a policy manager
Further information

- trifinite.org
 - Loose association of security experts
 - Public information about Bluetooth security
 - Individual testings and trainings
 - TRUST = trifinite unified security testing

- Contact us via mws05@trifinite.org
Questions or feedback