

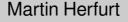
Demystifying Tesla's Bluetooth Passive Entry System

CanSecWest 2022

trifinite.org

About trifinite.org

- Group founded in August 2004 by
 - Collin Mulliner
 - Martin Herfurt (me)
- Pioneered in Bluetooth (Classic) Security
- Participation in tech. Testing events organized by the Bluetooth SIG helping vendors with security
- Webpage renewed in 2022 !



About Me

- Martin Herfurt
- Co-Founder of **trifinite.**group (est. 2004)
 - First Bluetooth Security Research team (trifinite.org)
 - Created Blooover Application (now on GitHub)
- Author of App "Tesla Radar" (teslaradar.com)
- Owner of a black 2019 Tesla Model 3

trifinite

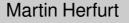
Memory Lane

Why you shouldn't use Tesla PAAK

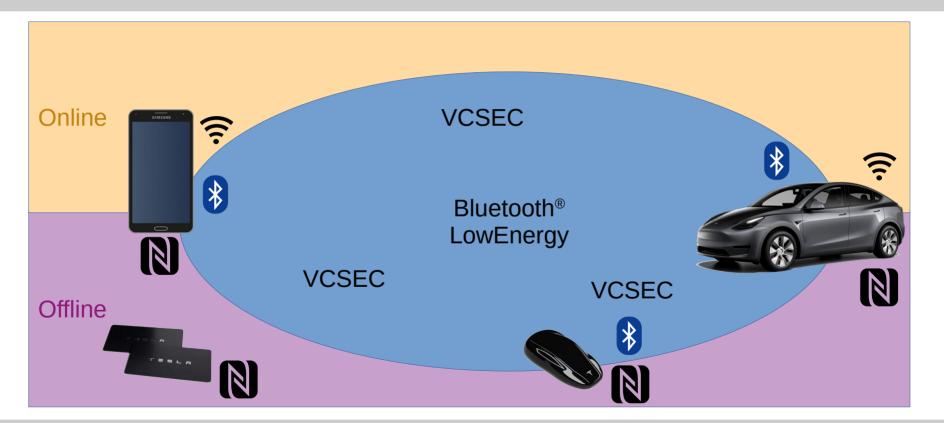
Project TEMPA – Investigating BLE

- Technical Background about Tesla's Passive Entry system
 - Found on all Tesla Models 3/Y
 - Found on Tesla Model S/X 2021+
 - About 2 million+ vehicles to date
- Identifying/Tracking vehicles
- Exchanging messages with vehicles via Bluetooth LE
- Possible impacts on vehicle's security

Project TEMPA – Investigating BLE


- Some of the things have been (partially) fixed and improved during the time of this research
- Findings reverse-engineered from the official Tesla app for Android and from observed messages
- Research started in 06/2019
- Research intensified in 06/2021 with VCSEC

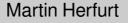
PhoneKey


- Tesla's BLE-based Passive Entry System
- Introduced with Model 3 in 2018
- Idea: The owner's phone replaces the car key/fob
- Now also in use in Model Y and 2021 Facelift S/X
- Very likely to be part of future Tesla Models

Ways to Unlock a Tesla (S/3/X/Y)

Tesla (S/3/X/Y) Unlock Methods (1)

- NFC-Card
 - Owners get two whitelisted NFC-Cards with car
 - Different form-factors sold on Internet (e.g. KeyRing)
- Usage
 - card is held to driver-side B-pillar to unlock
 - card is held to middle-console to drive/authorize
 - No passive entry!


_org

trifinite

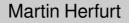
Tesla (S/3/X/Y) Unlock Methods (2)

- PhoneKey
 - Feature of the official iOS/Android app
 - Based on Bluetooth LE (BLE) / NFC
 - Allows "passive entry" and basic security functions
- Usage
 - Phone is carried by owner
 - Authorization to unlock/drive via BLE / NFC / Online

Tesla (S/3/X/Y) Unlock Methods (3)

- KeyFob
 - Small Device (sold extra for 160€)
 - Based on Bluetooth LE (BLE)
 - Allows "passive entry" (in later versions (starting with V. P60))
- Usage
 - Keyfob is carried by owner
 - Authorization to unlock/drive via BLE / NFC
 - Authorization via tap on B-pillar or middle console

Twitter Poll (1)



Tesla Radar @TeslaRadar

How do you unlock your Tesla Model 3/Y?Please RT

- Key Fob
- Phone Key
- NFC Card

...

How does PhoneKey BLE work?

- 1.Smartphone with app finds vehicle
 - Smartphone identifies vehicle
 - Smartphone connects to vehicle
- 2.App on smartphone communicates with car
- 3.Car (un)locks / starts / opens etc.

trifinite

1. Smartphone with app finds vehicle

- Car advertises GATT services via BLE (Peripheral)
 - Name (standard)
 - To Vehicle (Tesla)
 - From Vehicle (Tesla)
- manufacturer data has iBeacon structure
 - UUID, major ID, minor ID
- There used to be four visible beacons per vehicle!

_org

BLE Advertisement

- Manufacturer-Data (uses iBeacon format)
 - enables iPhone background vehicle detection
- UUID
 - 74278BDA-B644-4520-8F0C-720EAF059935
- Major/Minor ID (2 bytes each)
 - Random values (collissions possible but unlikely)

2. Smartphone identifies vehicle

- BLE device name(s)
 - Structure: S<8 bytes in hex>C (D,P,R)
 - Guess: C(enter) D(river side) P(assenger side) R(ear)
- Major/Minor ID (mainly for iPhone)
- <8 bytes in hex>
 - Seemed random at first
 - Unique to vehicle

.org

trifinite

PhoneKey

- Smartphone with TeslaApp (Andoid/iOS)
- Phone initiates BLE connection to vehicle
- Vehicle identified by iBeacon Name
 - Bluetooth Device Address is not used, as iOS devices obfuscate this for privacy
- IMU State has been added (380s)
 - IMU = Inertia Monitoring Unit

trifinite

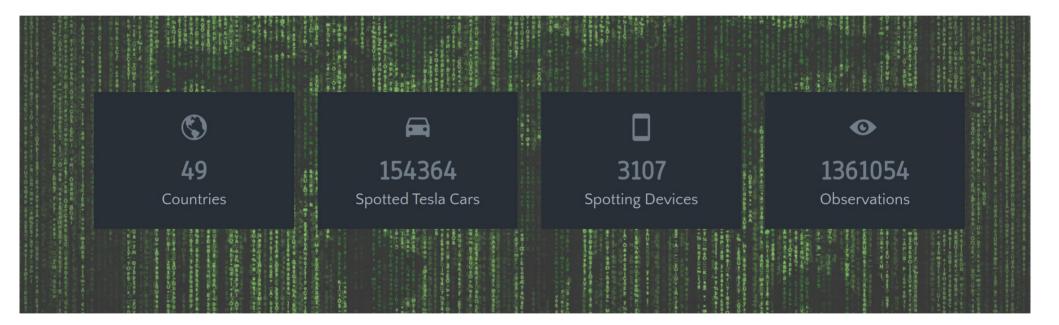
Unique to vehicle!

- Always turned on
- Visible to anyone with BLE radio
- Privacy issue!
- Stalking
 - Compare: Privacy dicussion concerning Apple AirTag (AirTag even randomizes ID)
 - Similarities to Tesla's PhoneKey

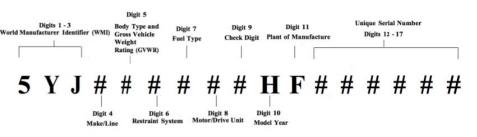
Correspondence with Tesla (in 2019)

- Complaint concening unique identifier
 - Does not change over time
 - Owners cannot turn signal off
- Tracking cars/owners becomes possible
- Tesla acknowledged this fact and wrote that this this situation and its implications are accepted risks/circumstances

Tesla Radar


- Project first published in August 2019 (Chaos Camp)
- With no understanding of all the inner workings
- Android App (available in Play Store)
- Crowdsourcing vehicle discovery
- First: Showcasing privacy issues
- Then: Game for the Tesla fan community with rankings etc.
- And: data-collection for research

Tesla Radar


www.teslaradar.com

VIN Structure (17 Digits)

- Manufacturer ID
- Model Type
- Manufacturing Plant
- Manufacturing Year
- Serial Number
- Check-Digit

- Stadard/Dual/ Performance
- LHD/RHD?
- Battery Type

VIN Detection

- 16 character String used as part of the iBeacon name (8 hex-encoded bytes)
- Created from SHA1-hash over Vehicle VIN
 - VIN Identifier
- Reverse ID->VIN via special Rainbow-Table
- Used for identifying vehicles in Owner-List

VIN Index

- All possible Tesla VINs (with PhoneKey)
 - Research about production numbers in different plants
 - Research on web-pages for used Teslas
- Size: 217140601 objects ~ 20GB
- Hit-Rate: 98.75%
- Used for model-detection in TeslaRadar app

Wardriving 2.0 (BLE)

Premiere: The Tesla Parking Lot Job

Correspondence with Tesla (in 2021)

- Bug-Bounty request concerning relay attack
 - Attackers can open car (and maybe steal it or at least some parts / stuff)
- Tesla acknowledged this fact and wrote that this this is "a known limitation" of the Phone Key Feature and that people should use PIN2Drive
- pwn2own: Not interested in Relay-Attacks!

Twitter Poll (2)

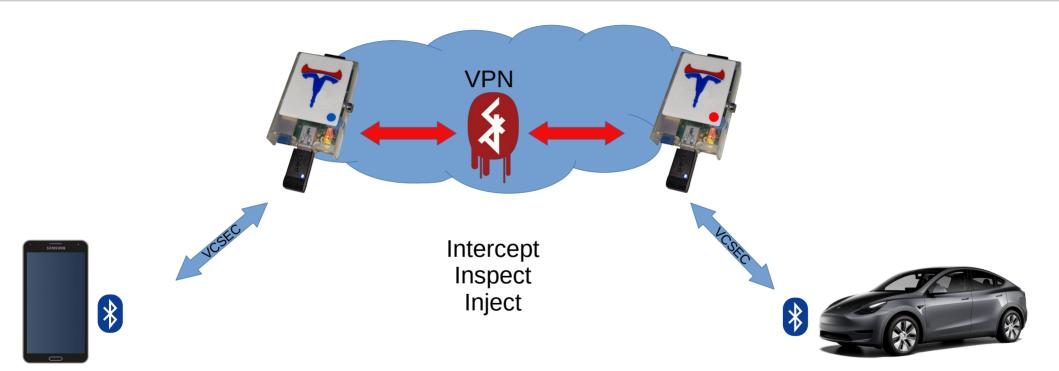
Tesla Radar @TeslaRadar

As a Tesla Owner: Which of these features are active in your car(s)? **#Tesla #Poll** Please RT for reach!

- None
- Sentry Mode
- Pin to Drive
- Both

Martin Herfurt

...


Relay Attack != Relay Attack

- RF Relay Attacks (PHY Layer) → Limited Range
 - Limited by signal RTT (for passive methods like NFC)
 - Limited by signal strength
- MitM Relay Attacks (Link Layer)
 - Not so much limited by signal time/strength
 - Could be limited by protocol (Network Layer) mechanisms (e.g Bluetooth Legacy Pairing)

MitM Relay Attack from Video

Possible Scenario (not tested)

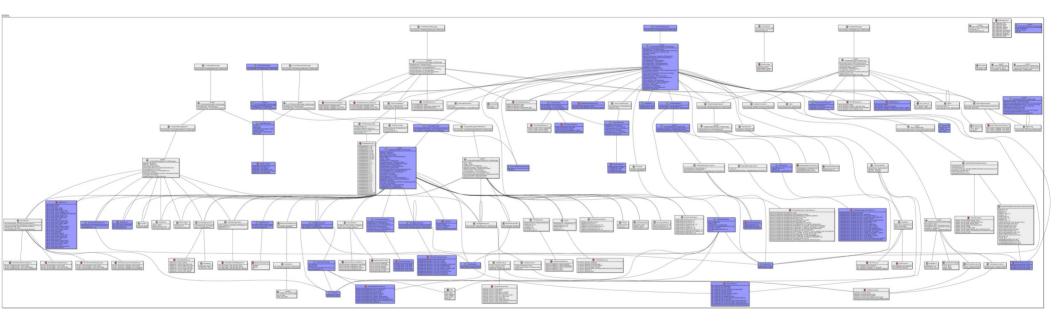
- Flight Mode:
 - WiFi/BT is allowed
- Attacker has On-Board Internet-Access
- Complice at airport parking lot has access to vehicle... for hours

VCSEC Protocol

- Based on Google Protocol Buffers (protobuf), later Square/Wire
 - Perfect match for limited bandwidth in BLE
- Defines interaction between Security Devices and the Vehicle
- Deducted Use-cases
 - PhoneKey
 - KeyFob
 - TP (Tire Pressure Subsystem)
 - Backend-Communication (?)
 - Maybe even more use-cases

VCSEC History (1)

- Introduced in App V3.3.5-344 (April 2018)
- App Version 3 makes use of Google/Protobuf
 - Extractable with pbtk tool
- Current App Version 4 uses Square/Wire
 - Very similar output but no extraction with pbtk
 - Custom script to extract proto-file from POJOs from decompiled Android app (experimental)


VCSEC History (2)

- Introduced in App V3.3.5-344 (April 2018)
- Four major iterations so far
 - VCSEC.proto v1 (2018-04-12 V3.3.5-344)
 - 22 Messages and 9 Enums
 - VCSEC.proto v2 (2019-11-28 V3.10.2-388)
 - 53 Messages and 27 Enums
 - VCSEC.proto v3 (2020-06-21 V3.10.6-407)
 - 62 Messages and 32 Enums
 - VCSEC.proto v4 (2022-05-13 V4.8.1-1032)
 - 77 Messages and 45 Enums

trifinite.org

VCSEC – App Version 4.8.1 (05/22)

77 Messages 45 Enumerations Colored entities are referenced in decompiled BLE plugin code

BLE-Endpoints (Characteristics)

- Service
 - 00000211-B2D1-43F0-9B88-960CEBF8B91E
- Characteristic: **To Vehicle** (write)
 - 00000212-B2D1-43F0-9B88-960CEBF8B91E
- Characteristic: From Vehicle (read/subscribe)
 - 00000213-B2D1-43F0-9B88-960CEBF8B91E

(De)Serializing messages via shell

- Serialized messages are often represented as hex-encoded strings (e.g. 00040a021001)
- Size prefix (2 octets) not compatible with protoc
- Shell scripts in Tesla VCSEC Archive (github)
 \$> cat message.txt | protoc --encode=VCSEC.ToVCSECMessage
 -I . VCSEC.proto | xxd -p -1 100

\$> cat message.hex | xxd -r -p | protoc -decode=VCSEC.FromVCSECMessage VCSEC.proto

Cryptographic Keys

- Every Key Entity has EC Keypair
 - Based on prime256v1 curve

\$> openssl ecparam -name prime256v1 -genkey -noout -out created_key.pem

- Shared secret is derived used via Diffie-Hellman key exchange
 - 128 bit
- Used for authentication/encryption

Whitelisting Keys

- Process requires key with OWNER_ROLE & NFC
- Max. 19 keys can be enrolled per vehicle
 - More keys / slots / channels possible?
 - WHITELISTKEYPERMISSION_MODIFY_FLEET_RESERVED_SLOTS
 - Fleet mgmt is a business feature introduced in 02/22
- Whitelisted keys are referenced with keyID
 - KeyID = first 4 bytes of SHA1(public key)

Whitelisted Keys (InformationReq)

```
whitelistInfo {
  numberOfEntries: 9
  whitelistEntries {
    publicKeySHA1: "$\206\202d"
  whitelistEntries {
    publicKeySHA1: "S`\031\375"
  whitelistEntries {
    publicKeySHA1: "\221=\210\205"
  whitelistEntries {
    publicKeySHA1: ";\223\300\027"
  slotMask: 511
```


Service Key (Most likely NFC)

```
whitelistEntryInfo {
 keyId {
   publicKeySHA1: "$\206\202d"
  }
 publicKey {
   PublicKeyRaw: "\004\333\243\225\271\237\217:\"\022*yCX\000\3741 \
357b\261w\216\315\\367\313j\037\201wH\006q\204\350\264v\025\0054Sc
305L\356\234\216\343\nZ\033\005>/L\032\214\373W7Q\322\255\244"
 keyRole: ROLE SERVICE
sessionInfo {
 token: "\256\006Mj\270\237\277Y\310\223\023w\235\221<I\270\375,5"
 publicKey: "\004M)d\2136\372\201J\rh\253\354\220cZ\307 \
276\320\3568\212G\016\202f\223\025m\267\360\241!}\232\372vH\304 \
3532\244\023\016@1hbA\315\276g(+22g\235\3663R.\367"
```


Example (NFC)

```
whitelistEntryInfo {
 kevId {
   publicKeySHA1: "S`\031\375"
 publicKey {
   PublicKeyRaw: \004\323\32\321U-\320;=\215\014\331\025)C\303c*/\\
024\016\007\207\347dd\r\21605\342v\362\360\2
67\336{\224\354R\376\332\203\243Z\377 \3267D\3577\215V\343P\315A\306\3603}\3027"
 metadataForKey {
   keyFormFactor: KEY_FORM_FACTOR_NFC_CARD
  slot: 1
 keyRole: ROLE OWNER
}
sessionInfo {
  token: "^v\355*\345\374#\242Y\374\277N\277\347\202\303\355\265\t\177"
 publicKey: "\004M)d\2136\372\201J\rh\253\354\220cZ\307_\276\320\3568\212G\016\202f\
223\025m\267\360\241!}\232\372
vH\304 \3532\244\023\016@1hbA\315\276g(+22g\235\3663R.\367"
```


Example (PhoneKey)

```
whitelistEntryInfo {
 kevId {
   publicKeySHA1: "U\2346\373"
 publicKey {
   PublicKeyRaw: "\004>\347\2741[\240\372\030\334h\017\034Z\251\304o\272\202$\
320\010N3\374\005\362\032\316\#\323\270\241\262\'\337\375\243\200\316d\
245\007\337\266F\017\036\335\201pM\017\254S\022\274\200\320W\210\307\3230"
 metadataForKey {
   keyFormFactor: KEY_FORM_FACTOR_ANDROID_DEVICE
 slot: 4
 keyRole: ROLE OWNER
}
sessionInfo {
 token: "h\234*\257\022\234o\375\223+\367}\330\030a\021r)/\301"
 counter: 44
 publicKey: "\004M)d\2136\372\201J\rh\253\354\220cZ\307 \276\320\3568\212G\016\202f\
223\025m\267\360\241!\
367"
```


Example (KeyFob)

```
whitelistEntryInfo {
 kevId {
   publicKevSHA1: "\007\273\0360"
 publicKey {
   PublicKeyRaw: "\004\005\375\367G]\235\32235\253\255\207\007HL\"\177S\225=]\
016\211\237\377Rs)v\370\274\307@#\016]$\276\342\314\024\261\373\2067\342\316\337TA\
262\017\330\004\353\353J\337\307\265{\007V\002"
 metadataForKey {
   keyFormFactor: KEY_FORM_FACTOR_3_BUTTON_BLE_CAR_KEYFOB_P60
 slot: 5
 keyRole: ROLE OWNER
}
sessionInfo {
 token: "\322\304J\250\277>\036i(\0229\022{\255$\323v\027\\\245"
 counter: 2479
 publicKey: "\004M)d\2136\372\201J\rh\253\354\220cZ\307 \276\320\3568\212G\016\202f\
223\025m\267\360\241!\
367"
```


Roles and Permissions

ROLE_NONE ROLE_SERVICE ROLE_OWNER ROLE_DRIVER ROLE_FM WhitelistKeyPermission_E WHITELISTKEYPERMISSION_ADD_TO_WHITELIST WHITELISTKEYPERMISSION_LOCAL_UNLOCK WHITELISTKEYPERMISSION_LOCAL_DRIVE WHITELISTKEYPERMISSION_REMOTE_UNLOCK WHITELISTKEYPERMISSION_REMOTE_DRIVE WHITELISTKEYPERMISSION_CHANGE_PERMISSIONS WHITELISTKEYPERMISSION_REMOVE_FROM_WHITELIST WHITELISTKEYPERMISSION_REMOVE_SELF_FROM_WHITELIST WHITELISTKEYPERMISSION_REMOVE_SELF_FROM_WHITELIST WHITELISTKEYPERMISSION_MODIFY_FLEET_RESERVED_SLOTS WHITELISTKEYPERMISSION_UNKNOWN

FM = Fleet Manager (?)

Service Key Permissions

WHITELISTKEYPERMISSION_ADD_TO_WHITELIST WHITELISTKEYPERMISSION_LOCAL_UNLOCK WHITELISTKEYPERMISSION_LOCAL_DRIVE WHITELISTKEYPERMISSION_REMOTE_UNLOCK WHITELISTKEYPERMISSION_REMOTE_DRIVE WHITELISTKEYPERMISSION_CHANGE_PERMISSIONS WHITELISTKEYPERMISSION_REMOVE_FROM_WHITELIST WHITELISTKEYPERMISSION_REMOVE_SELF_FROM_WHITELIST WHITELISTKEYPERMISSION_MODIFY_FLEET_RESERVED_SLOTS

FromVCSEC

- All VCSEC messages that originate from Vehicle
- Most frequent messages:
 - vehicleStatus
 - authenticationRequest
 - commandStatus
- Observation: No cryptographically protected messages from vehicle!

FromVCSEC – Examples (1)

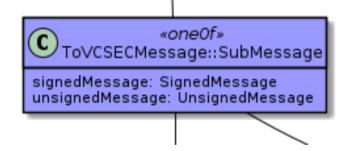
001c1a1a12160a14d658de76f3a930b63410c6b6382a554781979d041802

```
--- FromVCSECMessage ---
authenticationRequest {
   sessionInfo {
     token: "\326X\336v\363\2510\2664\020\306\2668*UG\201\227\235\004"
   }
   requestedLevel: AUTHENTICATION_LEVEL_DRIVE
}
```


FromVCSEC – Examples (2)

00072205120308de15

00040a021001


```
--- FromVCSECMessage ---
commandStatus {
    signedMessageStatus {
        counter: 2782
    }
```

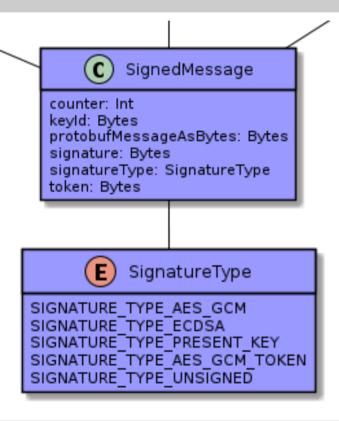
```
--- FromVCSECMessage ---
vehicleStatus {
    vehicleLockState: VEHICLELOCKSTATE_LOCKED
```


ToVCSEC

- All VCSEC messages that are sent to vehicle
- Depending on use-case:
 - unsignedMessage
 - Not cryptographically protected
 - signedMessage
 - Crypto: AES-GCM (AEAD)

unsignedMessage

«one0f» UnsignedMessage::SubMessage


IMUState: IMUState E RKEAction: RKEAction E BLEConfigAll: BLEConfigAll InformationRequest: InformationRequest TPAdv: TPAdv TPData: TPData TPLRDetection: TPLRDetection TPNewSensorData: TPNewSensorData TPNotifyTrackerStats: TPNotifyTrackerStats TPWheelUnitInfo: TPWheelUnitInfo WhitelistOperation: WhitelistOperation appDeviceInfo: AppDeviceInfo authenticationResponse: AuthenticationResponse closureMoveRequest: ClosureMoveRequest connectionMetrics: ConnectionMetrics deviceActivity: Activity E deviceMotion: DeviceMotion fromRCIResponse: FromRCI genealogyResponse: GenealogyResponse getEpochSessionInfo: GetSessionInfoRequest keyfobinfo: Keyfobinfo lowPowerDeviceSleepManagerStats: SleepManagerStats nfcseState: NFCSEState resetTrackerStats: ResetTrackerStats setMetaDataForKey: KeyMetadata updaterResponse: UpdaterResponse

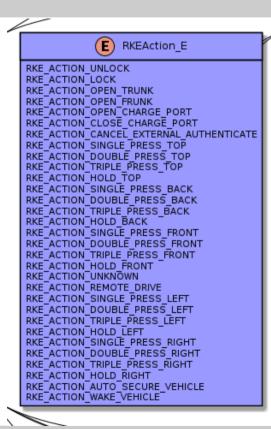
- Used for messages **without** direct security context
- Used as encapsulating message for signedMessage cryptograms

signedMessage

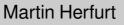
- Used for messages with direct security context
- Used as encapsulating message for signedMessage cryptograms
- IMUState: used for mitigating relay attack(!?)

Signed Messages

- Galois Counter Mode with Associated Data
 AES-GCM AEAD
 - Prevents replay attacks (counter)
 - Rolling Code
 - Prevents KPA attacks
 - GMAC
 - Additional Data (session token data in requests)
 - Also prevents replay attacks


GCM Structure (Tesla)

- SharedSecret 16 octets
- Invocation-Counter only 4 octets (not 8) (counter)
- Signature/Tag (GMAC) 16 octets
- Additional Data (optional) 20 octets (session token)
 - SIGNATURE_TYPE_AES_GCM
 - SIGNATURE_TYPE_AES_GCM_TOKEN


trifinite

RKAction_E

- Used for control commands in app/fob
- Is encapsuled in unsignedMessage before encryption

SignedMesage_information_E

SignedMessage_information_E

SIGNEDMESSAGE INFORMATION NONE SIGNEDMESSAGE INFORMATION FAULT UNKNOWN SIGNEDMESSAGE INFORMATION FAULT NOT ON WHITELIST SIGNEDMESSAGE INFORMATION FAULT IV SMALLER THAN EXPECTED SIGNEDMESSAGE INFORMATION FAULT INVALID TOKEN SIGNEDMESSAGE INFORMATION FAULT TOKEN AND COUNTER INVALID SIGNEDMESSAGE INFORMATION FAULT AES DECRYPT AUTH SIGNEDMESSAGE INFORMATION FAULT ECDSA INPUT SIGNEDMESSAGE INFORMATION FAULT ECDSA SIGNATURE SIGNEDMESSAGE INFORMATION FAULT LOCAL ENTITY START SIGNEDMESSAGE INFORMATION FAULT LOCAL ENTITY RESULT SIGNEDMESSAGE INFORMATION FAULT COULD NOT RETRIEVE KEY SIGNEDMESSAGE INFORMATION FAULT COULD NOT RETRIEVE TOKEN SIGNEDMESSAGE INFORMATION FAULT SIGNATURE TOO SHORT SIGNEDMESSAGE_INFORMATION_FAULT_TOKEN_IS_INCORRECT_LENGTH SIGNEDMESSAGE INFORMATION FAULT INCORRECT EPOCH SIGNEDMESSAGE INFORMATION FAULT IV INCORRECT LENGTH SIGNEDMESSAGE INFORMATION FAULT TIME EXPIRED SIGNEDMESSAGE INFORMATION FAULT NOT PROVISIONED WITH IDENTITY SIGNEDMESSAGE INFORMATION FAULT COULD NOT HASH METADATA

• What could possibly go wrong with encryption?

HandlePulledWithoutAuthSpecificPayload

C HandlePulledWithoutAuthDeviceSpecificPayload

RSSICenter: Int RSSIFront: Int RSSILeft: Int RSSINECCradle: Int RSSIRear: Int RSSIRearLeft: Int RSSIRearRight: Int RSSIRight: Int RSSISecondary: Int authenticationLevel: AuthenticationLevel E highThreshCenterPresent: Bool highThreshFrontPresent: Bool highThreshLeftPresent: Bool highThreshNFCPresent: Bool highThreshRearLeftPresent: Bool highThreshRearPresent: Bool highThreshRearRightPresent: Bool highThreshRightPresent: Bool highThreshSecondaryPresent: Bool kevChannel: Int present: Bool rawDeltaBavesLeftPresent: Bool rawDeltaBayesRightPresent: Bool sortedDeltaBayesLeftPresent: Bool sortedDeltaBayesRightPresent: Bool

• Rather new "Alert" feature

- Introduced in app Version 4.3.0
- First vehicle firmware 2022.12.3

FromVCSEC – Alert with Payload

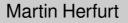
0023ea02200a1e08d806180128013215080618012075287b305f3867680170017801880101

```
--- FromVCSECMessage ---
alert {
  alertHandlePulledWithoutAuth {
    timeSinceAlertSet ms: 856
    connectionCount: 1
    authRequested: true
    deviceSpecificPayload {
      kevChannel: 6
      present: true
      RSSILeft: -59
      RSSIRight: -62
      RSSIRear: -48
      RSSICenter: -52
      highThreshLeftPresent: true
      highThreshRightPresent: true
      highThreshCenterPresent: true
      highThreshRearPresent: true
```


FromVCSEC – Alert with less details

0018 ea 02150 a 1308 f 4051801320 c 0804180120772877306 d 386 f

```
alert {
   alertHandlePulledWithoutAuth {
     timeSinceAlertSet_ms: 756
     connectionCount: 1
     deviceSpecificPayload {
        keyChannel: 4
        present: true
        RSSILeft: -60
        RSSIRight: -60
        RSSIRear: -55
        RSSICenter: -56
     }
```

RKAction_E

E KeyFormFactor
KEY_FORM_FACTOR_UNKNOWN
KEY_FORM_FACTOR_NFC_CARD
KEY FORM FACTOR 3 BUTTON BLE CAR KEYFOB
KEY FORM FACTOR BLE DEVICE
KEY_FORM_FACTOR_NFC_DEVICE
KEY FORM FACTOR BLE AND NFC DEVICE
KEY FORM FACTOR IOS DEVICE
KEY FORM FACTOR ANDROID DEVICE
KEY FORM FACTOR 3 BUTTON BLE CAR KEYFOB P60
KEY_FORM_FACTOR_CLOUD_KEY
KEY_FORM_FACTOR_3_BUTTON_GEN2_CAR_KEYFOB_P60
KEY FORM FACTOR 5 BUTTON GEN2 CAR KEYFOB P60
KEY_FORM_FACTOR_3_BUTTON_GEN2_CAR_KEYFOB_P60_V
KEY_FORM_FACTOR_3_BUTTON_GEN2_CAR_KEYFOB_P60_V

- Used for control commands in app/fob
- Is encapsuled in unsignedMessage before encryption

SignedMessage Example

0018ea02150a1308f4051801320c0804180120772877306d386f

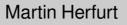
```
--- ToVCSECMessage ---
signedMessage {
    protobufMessageAsBytes: "h\001\251\242"
    signatureType: SIGNATURE_TYPE_AES_GCM_TOKEN
    signature: "}\2461\023E\306\257/\274\037\026\032\375#\355\222"
    keyId: "\'\365\030\021"
    counter: 2781
}
```


Possible Replay Attack

- Observation: Session Token does not change very often
- Get SessionData from vehicle (counter, token)
- Spoof Authentication Requests to phone
- Record and replay Phone response

Key Drop Attack (fixed)

- PhoneKey App sends signed message
- Attacker answers for vehicle:
 - SIGNEDMESSAGE_INFORMATION_FAULT_NOT_ON_WHITELIST
- PhoneKey app invalidates whitelisted Key
- User is locked out
- Was working in December 2021 now fixed!



trifinite

Tesla's Mitigation: Relay Attack

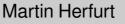
- Supposed to be mitigated by IMU_STATE
- IMU_STATE is UnsignedMessage
- IMU_STATE can be injected by an Attacker

Key Enumeration (unrestricted)

- Formfactors (what kind of devices?)
- Active Keys (how many users/keys)
- Counters (which key is used over time?)
- Service Key ID (maybe service region?)
 - Two alternating keys identified (Europe?)

What about the KeyFob?


- Research in Progress
- Vehicle initiates connection to KeyFob
- GATT-Structure similar to Vehicle when connection via PhoneKey
- Only connectable when in motion (10s Timeout)
- Shorter Messages compared to PhoneKey comm

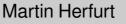

trifinite

Tool: tempara

- tempara.py (on github)
 - Tesla VCSEC client based on Bleak library
 - For your Tesla, only!
- Version 0.1.1
 - templates for key enumeration
 - de/encoding of VCSEC messages

Resource: VCSEC Archive

- All VCSEC.proto files to date (on github)
- Provided for educational purposes
- Derived from decompiled Android app
- Shell scripts to get started (protoc rquired)
 - decode.sh script
 - encode.sh script



Tool: VINTag

- VINTag.py (on github)
 - API Client for VIN decoding
 - Requires free RapidAPI account / API key
- API Endpoints:
 - https://rapidapi.com/trifinite/api/tesla-vin-identifier
 - s3xy: resolves Model Type
 - location: manufacturing location
 - year: manufacturing year
 - vin: complete VIN detection (not free)

What do you think?

TeslaKee: Doesn't talk to strangers!

- Does talk to your car
- Replacement for Tesla's PhoneKey
- Protection against:
 - Relay Attacks
 - Theft
 - Soon (Q3/2022) available for Android... and maybe later for iOS

www.teslakee.com - Please leave your contact to stay in the loop!

Conclusion

- Relay-Attacks are possible
 - PIN2Drive feature should be used / promoted better
 - Tesla PhoneKey really talks to anyone
- VCSEC does not stand for "Vehicle Control Security"
 - It stands for Vehicle Control Secondary
- Convenience/Ease of Use trumps Security (again)
 - PhoneKey cannot easily be deactivated, etc.

Credits

- Slawomir Jasek, SecuRing (gattacker.io)
- Sandeep Mistry, noble/bleno
- Skylot, jadx
- Lex Nastin (similar work) https://teslabtapi.lexnastin.com/

Thanks for your attention!

Questions?

trifinite.org/martin

https://recon.cx

Next Talk ... new stuff!

https://thehackermind.com

A little more background in the upcoming interview!

